Internalization of alpha-bungarotoxin on neurons induced by a neurotoxin that blocks neuronal acetylcholine sensitivity.
نویسندگان
چکیده
A protein neurotoxin (Bgt 3.1) present as a minor component in the venom of Bungarus multicinctus has been shown previously to block acetylcholine (ACh) sensitivity on chick ciliary ganglion (CG) neurons in cell culture. Alpha-bungarotoxin (Bgt. 2.2) binds to the neurons but does not block ACh sensitivity; the function of the Bgt. 2.2 binding site is unknown. The present studies demonstrate that Bgt 3.1 can induce the rapid internalization of Bgt 2.2 bound on the surface of CG and sympathetic neurons. The rapid internalization of bound Bgt 2.2 caused by Bgt. 3.1 can be seen with fluoresence microscopy using rhodamine-labeled Bgt 2.2 as the probe and by immunological techniques using anti-Bgt 2.2 antiserum to locate the bound 125I-Bgt 2.2. The rapid internalization is blocked by low temperature or by high concentrations of Bgt 2.2 and is not induced by Bgt 2.2 itself or by small cholinergic ligands. Bound 125I-Bgt 2.2 is released into the medium as degraded material after internalization is induced. Bgt 3.1 does not induce internalization of Bgt 2.2 bound to skeletal myotubes in culture nor does it induce the internalizaton of rhodamine-labeled nerve growth factor bound to sympathetic neurons, suggesting that its effect on neuronally bound Bgt 2.2 might be a specific one. Competition binding studies suggest that Bgt 3.1 may trigger the internalization of bound Bgt 2.2 by direct interaction with a Bgt 2.2 binding site. The effect of Bgt 3.1 on neuronal ACh sensitivity, however, does not depend on internalization of Bgt 2.2 binding sites since full inhibition of ACh sensitivity is still achieved by Bgt 3.1 under conditions where internalization is blocked. Neurons may have more than one class of Bgt 2.2 on the neurons. The internalization of Bgt 2.2 binding sites induced by Bgt 3.1 provides an unusual opportunity to study cellular mechanisms by which neurons can regulate the number and distribution of their surface components.
منابع مشابه
Identification of a nicotinic acetylcholine receptor on neurons using an alpha-neurotoxin that blocks receptor function.
An alpha-neurotoxin, Bgt 3.1, that reversibly blocks the ACh response of chick ciliary ganglion neurons has been used to identify 2 classes of high-affinity binding sites on the cells in culture. The first class appears to be the alpha-bungarotoxin binding site on the neurons. The second class of Bgt 3.1 sites is distinct from the alpha-bungarotoxin binding sites and has the properties expected...
متن کاملNeuronal acetylcholine receptors that bind alpha-bungarotoxin mediate neurite retraction in a calcium-dependent manner.
Neuronal membrane components that bind alpha-bungarotoxin with high affinity have only recently been shown unambiguously to function as nicotinic receptors. Activation of the receptors increases intracellular levels of free calcium in neurons. In the chick ciliary ganglion, where the receptors have been studied in some detail, they have been shown to have a predominantly nonsynaptic location on...
متن کاملDeterminants of competitive antagonist sensitivity on neuronal nicotinic receptor beta subunits.
We constructed a series of chimeric and mutant neuronal nicotinic acetylcholine receptor beta subunits to map amino acid residues that determine sensitivity to competitive antagonists. The beta 2 and beta 4 subunits form pharmacologically distinct receptors when expressed in combination with the alpha 3 subunit in Xenopus oocytes. At equipotent acetylcholine concentrations, alpha 3 beta 2 is 56...
متن کاملInhibition of neuronal acetylcholine sensitivity by alpha-toxins from Bungarus multicinctus venom.
Bungarus multicinctus venom contains several alpha-toxins in addition to the widely used alpha-bungarotoxin (Bgt 2.2). We have found that two of the alpha-toxins (Bgt 3.1 and 3.3) inhibit neuronal acetylcholine (AcCho) sensitivity when tested on ciliary ganglion neurons in cell culture. Over 90% of the AcCho sensitivity recorded in response to iontophoretic application of AcCho was blocked when...
متن کاملCharacterization of nicotinic receptors in chick retina using a snake venom neurotoxin that blocks neuronal nicotinic receptor function.
Nicotinic receptor function has been described in the retinas of a variety of vertebrate species. Neuronal bungarotoxin (NBT, also known as bungarotoxin 3.1, toxin F, or kappa-bungarotoxin) blocks nicotinic receptors in several neuronal preparations, while the neuromuscular antagonist alpha-bungarotoxin (BGT) fails to block most of these receptors. NBT (100 nM), but not BGT (10 microM), substan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 1 8 شماره
صفحات -
تاریخ انتشار 1981